
Week 7 - Friday

 What did we talk about last time?
 Finished TCP programming: HTTP
 Started UDP programming: DNS

 In C, the sizeof operator was designed to get the size of
types and variables in bytes

 It should be used to get information known at compile time
 It can never know the length of:
 Files
 Strings
 Dynamically allocated memory

 Yes, it's called sizeof, but a lot of things have non-intuitive
names in CS

 Given the above code, what is the value of each?
 sizeof(array)
 sizeof(array) – 1
 sizeof(array - 1)
 sizeof(word1)
 sizeof(word2)
 sizeof(word3)
 sizeof("goats")
 sizeof(x)
 sizeof(data)
 sizeof(fd)

 Answers given on next slide

int array[100];
char word1[] = "goats";
char word2[50] = "goats";
char* word3 = "goats";
int x = 500;
char* data = malloc(100);
int fd = open("file.txt", O_RDONLY);

 Note that these answers are based on the Ubuntu in the lab, which uses 64-bit addresses
 sizeof(array) 400
 sizeof(array) – 1 399
 sizeof(array - 1) 8
 sizeof(word1) 6
 sizeof(word2) 50
 sizeof(word3) 8
 sizeof("goats") 6
 sizeof(x) 4
 sizeof(data) 8
 sizeof(fd) 4

int array[100];
char word1[] = "goats";
char word2[50] = "goats";
char* word3 = "goats";
int x = 500;
char* data = malloc(100);
int fd = open("file.txt", O_RDONLY);

 Queries can be iterative:
 Ask the root, get a response for the TLD
 Ask the TLD for the domain you want
 Get a response closer to what you're

looking for and repeat
 Shown on the right

 Queries can also be recursive:
 Ask a name server, it handles everything

 To make the system efficient, servers
cache domains that have been asked
for recently

 There's a time-to-live value that says
how long a cached domain should be
kept

 DNS information is sent in resource records, which have the following
form:
 NAME is the human-readable domain name
 TYPE is gives the kind of record

▪ A is an IP address
▪ CNAME is a canonical name
▪ NS is an authoritative name server

 CLASS is what protocol, often IN for Internet
 TTL is time-to-live in a cache
 RDLENGTH is the length of the data in the record
 RDATA is the data

 NAME and RDATA are variable length, and all other fields are 16 bits

NAME

TYPE

CLASS

TTL

RDLENGTH

RDATA

 Like HTTP, DNS is a
request-response protocol

 Unlike HTTP, DNS uses
UDP and messages aren't
as human readable

 DNS messages contain
five fields: header,
question, answer,
authority, and additional
 Headers start with a

random ID to keep
messages straight

 Example request to resolve
example.com:

Field Data in Hex Meaning

Header

1234 XID=0x1234

0100 OPCODE=SQUERY

0001 0000 0000 0000 1 question field

Question
0765 7861 6d70 6c65 0363 6f6d 00 QNAME=EXAMPLE.COM

0001 0001 QCLASS=IN, QTYPE=A

Answer

Authority

Additional

Character 7 e x a m p l e 3 c o m 0

Hex 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00

Note:
Instead of dots, QNAME gives the

number of characters for each name part

 Here's a
reasonable
response to the
request from the
previous slide

 Don't worry
about the
OPCODE, it's a
set of bits laid
out according to
DNS rules

 QNAME uses a
special code to
indicate that the
name is 12 bytes
into this
response (to
avoid repetition)

Field Data in Hex Meaning

Header

1234 XID=0x1234

8180 OPCODE=SQUERY, RESPONSE, RA

0001 0001 0000 0000 1 question and 1 answer

Question
0765 7861 6d70 6c65 0363 6f6d 00 QNAME=EXAMPLE.COM

0001 0001 QCLASS=IN, QTYPE=A

Answer

c00c QNAME=EXAMPLE.COM [compressed]

0001 QTYPE=A

0001 QCLASS=IN

0000 e949 TTL = 0xe949 = 59721

04 RDLENGTH = 4

0x5db8d822 [93.184.216.34] RDATA

Authority

Additional

 Did you ever wonder how long a domain name can be?
 Each part of the name has a maximum of 63 characters
 The whole thing can't be more than 253 characters
 Examples:
 The Welsh village Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch registered

llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochuchaf.org.uk in honor of the
uchaf or upper part of their village

 German mathematician Gerard Steffens registered
3.141592653589793238462643383279502884197169399375105820974944592.eu in honor of
pi

 In 2000 (when both the web and Verizon were fresh and new), Verizon registered
verizonsucks.com to keep anyone else from using it
 The hacker magazine 2600 registered verizonreallysucks.com
 Verizon sued the magazine's publisher
 In retaliation, the magazine registered the domain

VerizonShouldSpendMoreTimeFixingItsNetworkAndLessMoneyOnLawyers.com

 DNS isn't part of the POSIX standard, so we need our own structs to hold the data

typedef struct {
uint16_t xid; // Randomly chosen identifier
uint16_t flags; // Bit-mask to indicate request/response
uint16_t qdcount; // Number of questions
uint16_t ancount; // Number of answers
uint16_t nscount; // Number of authority records
uint16_t arcount; // Number of additional records

} dns_header_t;

typedef struct {
char *name; // Pointer to the domain name in memory
uint16_t dnstype; // The QTYPE (1 = A)
uint16_t dnsclass; // The QCLASS (1 = IN)

} dns_question_t;

 The following code:
 Creates a UDP socket
 Makes an IPv4 address with the OpenDNS server 208.67.222.222, which is 0xd043dede in hex on the DNS

port of 53
 Initializes a dns_header_twith appropriate values

int socketfd = socket (AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in address;
address.sin_family = AF_INET; // IPv4
address.sin_addr.s_addr = htonl (0xd043dede); // 208.67.222.222 (0xd043dede)
address.sin_port = htons (53); // Port 53

// DNS header
dns_header_t header;
memset (&header, 0, sizeof (dns_header_t));
header.xid= htons (0x1234); // Randomly chosen ID
header.flags = htons (0x0100); // Q=0, RD=1
header.qdcount = htons (1); // Sending 1 question

 The following code (pretty slickly) fills in the weird naming scheme that requires a count
for the length of each name part before it

dns_question_t question;
question.dnstype = htons (1); // QTYPE 1=A
question.dnsclass = htons (1); // QCLASS 1=IN
question.name = calloc (strlen (hostname) + 2, sizeof (char)); // 2 more: \0 and first count
memcpy (question.name + 1, hostname, strlen (hostname));
uint8_t *prev = (uint8_t *) question.name;
uint8_t count = 0; // Count the bytes in a field

for (size_t i = 0; i < strlen (hostname); ++i) // Look for . locations
{

if (hostname[i] == '.') // End of a name part
{

*prev = count; // Store the count into the location before the part
prev = question.name + i + 1; // Update the prev pointer to the new location
count = 0;

}
else

++count;
}

*prev = count; // Store count for last part

 Before sending, everything must be packaged into one chunk of memory
// Final packet size
size_t packetlen = sizeof (header) + strlen (hostname) + 2 +
sizeof (question.dnstype) + sizeof (question.dnsclass);

uint8_t *packet = calloc (packetlen, sizeof (uint8_t));
uint8_t *p = (uint8_t *)packet;

memcpy (p, &header, sizeof (header)); // Copy in the header
p += sizeof (header);

// Copy the question name, QTYPE, and QCLASS fields
memcpy (p, question.name, strlen (hostname) + 2);
p += strlen (hostname) + 2;
memcpy (p, &question.dnstype, sizeof (question.dnstype));
p += sizeof (question.dnstype);
memcpy (p, &question.dnsclass, sizeof (question.dnsclass));

// Finally, send the packet over UDP
sendto (socketfd, packet, packetlen, 0, (struct sockaddr *) &addr,

(socklen_t) sizeof (addr));

 The DNS standard says that a message will never be more
than 512 bytes

 Thus, we can just read into a fixed-size buffer

socklen_t length = 0;
uint8_t response[512];
memset (&response, 0, 512);

// Receive the response
ssize_t bytes = recvfrom (socketfd, response, 512, 0, (struct sockaddr *)
&addr, &length);

 The following struct gives us a way to interpret the elements of the answer
 Note the __attribute__((packed)) at the bottom
 This compiler flag keeps the compiler from reorganizing the fields
 It's necessary so that everything matches the output we expect from the DNS server
 Compilers will often change struct fields around for greater efficiency

typedef struct {
uint16_t compression;
uint16_t type;
uint16_t class;
uint32_t ttl;
uint16_t length;
struct in_addr addr;

} __attribute__((packed)) dns_record_a_t;

 The following code reconstructs the name, putting dots back in it, and
lets us see where the data after it is

dns_header_t *response_header = (dns_header_t *)response;
assert ((ntohs (response_header->flags) & 0xf) == 0); // Check for error

// Get a pointer to the start of the question name
uint8_t *start_of_name = (uint8_t *) (response + sizeof (dns_header_t));
uint8_t total = 0;
uint8_t *field_length = start_of_name;
while (*field_length != 0)
{
// Put a dot back in the name and advance to next length
total += *field_length + 1;
*field_length = '.';
field_length = start_of_name + total;

}

 Finally, after the name, we can skip a null byte, qtype, qclass to get to the
answers

 Note that we have to be careful to change the data from network to host
endianness

dns_record_a_t *records = (dns_record_a_t *) (field_length + 5);
for (int i = 0; i < ntohs (response_header->ancount); ++i)

{
printf ("TYPE: %" PRId16 "\n", ntohs (records[i].type));
printf ("CLASS: %" PRId16 "\n", ntohs (records[i].class));
printf ("TTL: %" PRIx32 "\n", ntohl (records[i].ttl));
printf ("IPv4: %08" PRIx32 "\n", ntohl (records[i].addr));
printf ("IPv4: %s\n", inet_ntoa (records[i].addr));

}

 It's hard to follow all the code that we're going through in
class

 Try to comb through it on your own
 Note that there are a few mistakes in the book

 Reading and understanding code is one of the most valuable
skills you can develop

 The good news: A full DNS client program is given in section
5.8 of the book if you want to see all the code uninterrupted

 Broadcasting
 Deeper into the Internet

 Keep working on Project 2!
 Read sections 5.1, 5.2, and 5.3

	COMP 3400
	Last time
	Questions?
	Project 2
	Reminders about sizeof
	sizeof
	Testing your sizeof knowledge
	Answers
	Back to DNS
	DNS queries
	DNS resource record structure
	DNS requests
	DNS responses
	Brief interlude
	Putting it into code
	Preparing to send
	Horrible code to fill in the name
	Finally sending
	Getting an answer back
	Interpreting that answer
	Reconstructing the name
	Actual DNS information
	DNS madness
	Upcoming
	Next time…
	Reminders

