
Week 7 - Friday



 What did we talk about last time?
 Finished TCP programming: HTTP
 Started UDP programming: DNS









 In C, the sizeof operator was designed to get the size of 
types and variables in bytes

 It should be used to get information known at compile time
 It can never know the length of:
 Files
 Strings
 Dynamically allocated memory

 Yes, it's called sizeof, but a lot of things have non-intuitive 
names in CS



 Given the above code, what is the value of each?
 sizeof(array)
 sizeof(array) – 1
 sizeof(array - 1)
 sizeof(word1)
 sizeof(word2)
 sizeof(word3)
 sizeof("goats")
 sizeof(x)
 sizeof(data)
 sizeof(fd)

 Answers given on next slide

int array[100];
char word1[] = "goats";
char word2[50] = "goats";
char* word3 = "goats";
int x = 500;
char* data = malloc(100);
int fd = open("file.txt", O_RDONLY);



 Note that these answers are based on the Ubuntu in the lab, which uses 64-bit addresses
 sizeof(array) 400
 sizeof(array) – 1 399
 sizeof(array - 1) 8
 sizeof(word1) 6
 sizeof(word2) 50
 sizeof(word3) 8
 sizeof("goats") 6
 sizeof(x) 4
 sizeof(data) 8
 sizeof(fd) 4

int array[100];
char word1[] = "goats";
char word2[50] = "goats";
char* word3 = "goats";
int x = 500;
char* data = malloc(100);
int fd = open("file.txt", O_RDONLY);





 Queries can be iterative:
 Ask the root, get a response for the TLD
 Ask the TLD for the domain you want
 Get a response closer to what you're 

looking for and repeat
 Shown on the right

 Queries can also be recursive:
 Ask a name server, it handles everything

 To make the system efficient, servers 
cache domains that have been asked 
for recently

 There's a time-to-live value that says 
how long a cached domain should be 
kept



 DNS information is sent in resource records, which have the following 
form:
 NAME is the human-readable domain name
 TYPE is gives the kind of record

▪ A is an IP address
▪ CNAME is a canonical name
▪ NS is an authoritative name server

 CLASS is what protocol, often IN for Internet
 TTL is time-to-live in a cache
 RDLENGTH is the length of the data in the record
 RDATA is the data

 NAME and RDATA are variable length, and all other fields are 16 bits

NAME

TYPE

CLASS

TTL

RDLENGTH

RDATA



 Like HTTP, DNS is a 
request-response protocol

 Unlike HTTP, DNS uses 
UDP and messages aren't 
as human readable

 DNS messages contain 
five fields: header, 
question, answer, 
authority, and additional
 Headers start with a 

random ID to keep 
messages straight

 Example request to resolve 
example.com:

Field Data in Hex Meaning

Header

1234 XID=0x1234

0100 OPCODE=SQUERY

0001 0000 0000 0000 1 question field

Question
0765 7861 6d70 6c65 0363 6f6d 00 QNAME=EXAMPLE.COM

0001 0001 QCLASS=IN, QTYPE=A

Answer

Authority

Additional

Character 7 e x a m p l e 3 c o m 0

Hex 07 65 78 61 6d 70 6c 65 03 63 6f 6d 00

Note:
Instead of dots, QNAME gives the 

number of characters for each name part



 Here's a 
reasonable 
response to the 
request from the 
previous slide

 Don't worry 
about the 
OPCODE, it's a 
set of bits laid 
out according to 
DNS rules

 QNAME uses a 
special code to 
indicate that the 
name is 12 bytes 
into this 
response (to 
avoid repetition)

Field Data in Hex Meaning

Header

1234 XID=0x1234

8180 OPCODE=SQUERY, RESPONSE, RA

0001 0001 0000 0000 1 question and 1 answer

Question
0765 7861 6d70 6c65 0363 6f6d 00 QNAME=EXAMPLE.COM

0001 0001 QCLASS=IN, QTYPE=A

Answer

c00c QNAME=EXAMPLE.COM [compressed]

0001 QTYPE=A

0001 QCLASS=IN

0000 e949 TTL = 0xe949 = 59721

04 RDLENGTH = 4

0x5db8d822 [93.184.216.34] RDATA

Authority

Additional



 Did you ever wonder how long a domain name can be?
 Each part of the name has a maximum of 63 characters
 The whole thing can't be more than 253 characters
 Examples:
 The Welsh village Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch registered 

llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogochuchaf.org.uk in honor of the 
uchaf or upper part of their village

 German mathematician Gerard Steffens registered 
3.141592653589793238462643383279502884197169399375105820974944592.eu in honor of 
pi

 In 2000 (when both the web and Verizon were fresh and new), Verizon registered 
verizonsucks.com to keep anyone else from using it
 The hacker magazine 2600 registered verizonreallysucks.com
 Verizon sued the magazine's publisher
 In retaliation, the magazine registered the  domain 

VerizonShouldSpendMoreTimeFixingItsNetworkAndLessMoneyOnLawyers.com



 DNS isn't part of the POSIX standard, so we need our own structs to hold the data

typedef struct {
uint16_t xid;      // Randomly chosen identifier
uint16_t flags;    // Bit-mask to indicate request/response
uint16_t qdcount;  // Number of questions
uint16_t ancount;  // Number of answers
uint16_t nscount;  // Number of authority records
uint16_t arcount;  // Number of additional records

} dns_header_t;

typedef struct {
char *name;        // Pointer to the domain name in memory
uint16_t dnstype;  // The QTYPE (1 = A)
uint16_t dnsclass; // The QCLASS (1 = IN)

} dns_question_t;



 The following code:
 Creates a UDP socket
 Makes an IPv4 address with the OpenDNS server 208.67.222.222, which is 0xd043dede in hex on the DNS 

port of 53
 Initializes a dns_header_twith appropriate values

int socketfd = socket (AF_INET, SOCK_DGRAM, 0);
struct sockaddr_in address;
address.sin_family = AF_INET;                 // IPv4
address.sin_addr.s_addr = htonl (0xd043dede); // 208.67.222.222 (0xd043dede)
address.sin_port = htons (53);                // Port 53

// DNS header
dns_header_t header;
memset (&header, 0, sizeof (dns_header_t));
header.xid= htons (0x1234);    // Randomly chosen ID
header.flags = htons (0x0100); // Q=0, RD=1
header.qdcount = htons (1);    // Sending 1 question



 The following code (pretty slickly) fills in the weird naming scheme that requires a count 
for the length of each name part before it

dns_question_t question;
question.dnstype = htons (1);  // QTYPE 1=A
question.dnsclass = htons (1); // QCLASS 1=IN
question.name = calloc (strlen (hostname) + 2, sizeof (char)); // 2 more: \0 and first count
memcpy (question.name + 1, hostname, strlen (hostname));
uint8_t *prev = (uint8_t *) question.name;
uint8_t count = 0; // Count the bytes in a field

for (size_t i = 0; i < strlen (hostname); ++i) // Look for . locations
{

if (hostname[i] == '.') // End of a name part
{

*prev = count;        // Store the count into the location before the part
prev = question.name + i + 1; // Update the prev pointer to the new location
count = 0;

}
else

++count;
}

*prev = count; // Store count for last part



 Before sending, everything must be packaged into one chunk of memory
// Final packet size
size_t packetlen = sizeof (header) + strlen (hostname) + 2 +
sizeof (question.dnstype) + sizeof (question.dnsclass);

uint8_t *packet = calloc (packetlen, sizeof (uint8_t));
uint8_t *p = (uint8_t *)packet;

memcpy (p, &header, sizeof (header)); // Copy in the header
p += sizeof (header);

// Copy the question name, QTYPE, and QCLASS fields
memcpy (p, question.name, strlen (hostname) + 2);
p += strlen (hostname) + 2;
memcpy (p, &question.dnstype, sizeof (question.dnstype));
p += sizeof (question.dnstype);
memcpy (p, &question.dnsclass, sizeof (question.dnsclass));

// Finally, send the packet over UDP
sendto (socketfd, packet, packetlen, 0, (struct sockaddr *) &addr, 

(socklen_t) sizeof (addr));



 The DNS standard says that a message will never be more 
than 512 bytes

 Thus, we can just read into a fixed-size buffer

socklen_t length = 0;
uint8_t response[512];
memset (&response, 0, 512);

// Receive the response
ssize_t bytes = recvfrom (socketfd, response, 512, 0, (struct sockaddr *) 
&addr, &length);



 The following struct gives us a way to interpret the elements of the answer
 Note the __attribute__((packed)) at the bottom
 This compiler flag keeps the compiler from reorganizing the fields
 It's necessary so that everything matches the output we expect from the DNS server
 Compilers will often change struct fields around for greater efficiency

typedef struct {
uint16_t compression;
uint16_t type;
uint16_t class;
uint32_t ttl;
uint16_t length;
struct in_addr addr;

} __attribute__((packed)) dns_record_a_t;



 The following code reconstructs the name, putting dots back in it, and 
lets us see where the data after it is

dns_header_t *response_header = (dns_header_t *)response;
assert ((ntohs (response_header->flags) & 0xf) == 0); // Check for error

// Get a pointer to the start of the question name
uint8_t *start_of_name = (uint8_t *) (response + sizeof (dns_header_t));
uint8_t total = 0;
uint8_t *field_length = start_of_name;
while (*field_length != 0)
{
// Put a dot back in the name and advance to next length
total += *field_length + 1;
*field_length = '.';
field_length = start_of_name + total;

}



 Finally, after the name, we can skip a null byte, qtype, qclass to get to the 
answers

 Note that we have to be careful to change the data from network to host 
endianness

dns_record_a_t *records = (dns_record_a_t *) (field_length + 5);
for (int i = 0; i < ntohs (response_header->ancount); ++i)

{
printf ("TYPE: %" PRId16 "\n", ntohs (records[i].type));
printf ("CLASS: %" PRId16 "\n", ntohs (records[i].class));
printf ("TTL: %" PRIx32 "\n", ntohl (records[i].ttl));
printf ("IPv4: %08" PRIx32 "\n", ntohl (records[i].addr));
printf ("IPv4: %s\n", inet_ntoa (records[i].addr));

}



 It's hard to follow all the code that we're going through in 
class

 Try to comb through it on your own
 Note that there are a few mistakes in the book

 Reading and understanding code is one of the most valuable 
skills you can develop

 The good news: A full DNS client program is given in section 
5.8 of the book if you want to see all the code uninterrupted





 Broadcasting
 Deeper into the Internet



 Keep working on Project 2!
 Read sections 5.1, 5.2, and 5.3
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